Experiments on classification of electroencephalography (EEG) signals in imagination of direction using Stacked Autoencoder
نویسندگان
چکیده
منابع مشابه
Experiments on classification of electroencephalography (EEG) signals in imagination of direction using Stacked Autoencoder
This paper presents classification methods for electroencephalography (EEG) signals in imagination of direction measured by a portable EEG headset. In the authors’ previous studies, principal component analysis extracted significant features from EEG signals to construct neural network classifiers. To improve the performance, the authors have implemented a Stacked Autoencoder (SAE) for the clas...
متن کاملStacked Robust Autoencoder for Classification
In this work we propose an lp-norm data fidelity constraint for training the autoencoder. Usually the Euclidean distance is used for this purpose; we generalize the l2-norm to the lp-norm; smaller values of p make the problem robust to outliers. The ensuing optimization problem is solved using the Augmented Lagrangian approach. The proposed lp -norm Autoencoder has been tested on benchmark deep...
متن کاملClassification of EEG Signals for Discrimination of Two Imagined Words
In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...
متن کامل[Article] EEG Based Eye State Classification using Deep Belief Network and Stacked AutoEncoder
متن کامل
Remote Sensing Image Classification Based on Stacked Denoising Autoencoder
Focused on the issue that conventional remote sensing image classification methods have run into the bottlenecks in accuracy, a new remote sensing image classification method inspired by deep learning is proposed, which is based on Stacked Denoising Autoencoder. First, the deep network model is built through the stacked layers of Denoising Autoencoder. Then, with noised input, the unsupervised ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of International Conference on Artificial Life and Robotics
سال: 2017
ISSN: 2188-7829
DOI: 10.5954/icarob.2017.gs1-3